无线通信日新月异,现在我们已经进入到了5G时代。5G代表了更快的速度,更低的延时,更多的链接数,它在人们的生活中所占有的比重和所起的作用越来越大。那么在通向5G的道路上我们经历了1G,2G,3G,4G。本文就和你一起回顾无线通信中的演进道路。
1. 1G 第一代移动通信技术
1.1. 1G的历史
2.1. 2G GSM (Global System for Mobile Communication)
1991年GSM技术第一次在芬兰应用。相比于第一代移动通信技术,最大的改进是利用了数字调制而不是模拟调制。这就大大减少了手机的尺寸和大小。同时它了用了TDMA(Time division multiple access)和CDMA(code division multiple access)技术来实现复用。GSM工作在900MHz频段。GSM在上行和下行上的最大速度是14.4Kbps, 它同时支持声音通话和短信的功能。同时声音的通话质量相比GSM有了很大的提高。在通话的安全性上也做了很大的改进。2G 网络的标识为 “2G”2.2. 2.5G GPRS(General Packet Radio Services)
GPRS在1993年ETSI 标准化并发表。最大的创新点是GPRS利用了Packet Switched 的技术。这种技术就是把要传递的信息变成一个一个的数据包,同时这种数据包可以并行的传递。GPRS的上行速度可以达到26.8Kbps,下行速度可以达到53. 6Kbps。这种数据传输率使得GPRS可以引入一个新的技术MMS(multimedia Message Service) ,也就是所谓多媒体信息服务。这种技术可以支持用户发送和接受像多媒体图片类似的信息。同时它开始支持以IP方式连接互联网。GPRS的符号是“G”,所以手机上如果显示G的时候说明你正在使用的是GPRS网络。2.3. 2.75G EDGE(Enhanced Data for GSM Evolution)
2003年由ATLTEA的下行速度可以达到1Gbps,上行速度可以达到500Mbps。Wimax的的理论下行速度为128Mbps, 上行速度为56MbpsLTE所支持的频段有很多,它包括700/800/900/1700/1800/1900/2100/2600MHz.基于4G的低延时,高速率,基于IP packet switching等特点,4G扩展了很多相关的应用场景,包括基于IP 语言通话的VoIP,3D电视,视频会议,高清移动电视,游戏和云计算。5. 5G
5.1. 需要5G的原因
由于IOT,智慧城市,大量传感器的应用,智能驾驶,远程医疗的应用的需求,更高速度,更低时延,高多连接数的无线通信网络应用而生,这就是5G.
5.2. 5G 发展历史
2013年IMT-2020(5G)推进组第一次会议在北京召开2014年5月8日,日本电信营运商NTT DoCoMo正式宣布将与Ericsson、Nokia、Samsung等六家厂商共同合作,开始测试超越现有4G网络1000倍网络承载能力的高速5G网络,传输速度可望提升至10Gbps。2016年5月31日,第一届全球5G大会在北京举行2017年12月21日,在国际电信标准组织3GPP RAN第78次全体会议上,5G NR首发版本正式冻结并发布。2018年6月13日,3GPP 5G NR标准SA(Standalone,独立组网)方案在3GPP第80次TSG RAN全会正式完成并发布,这标志着首个真正完整意义的国际5G标准正式出炉。2018年12月1日,韩国三大运营商SK、KT与LG U 同步在韩国部分地区推出5G服务,这也是新一代移动通信服务在全球首次实现商用2019年6月6日,工信部正式向中国电信、中国移动、中国联通、中国广电发放5G商用牌照,中国正式进入5G商用元年。2022年1月,工业和信息化部发布的《2021年通信业统计公报》显示截至2021年底,中国国累计建成并开通5G基站142.5万个,总量占全球60%以上,每万人拥有5G基站数达到10.1个。5.3. 5G的技术概览
5G用了一个新的射频标准(NR,New Radio)来定义作为空口定义。与前几代通信系统相比最大的不同是采用了波束赋形(beamforming)和超大规模MIMO(Massive MIMO)。5G可以在非常宽的频率上工作。5G第一次明确地提出了不同地应用场景。波束赋形(beamforming)波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。 例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。如果要采用波束成形技术, 前提是必须采用多天线系统,
· 超大规模MIMO(Massive MIMO)超大规模MIMO的使用就是用相当数量的天线阵列用于射频信号的发送和接受以提供5G系统的速度和可靠性。5.4. 5G的应用场景
5.5. 5G的频段
5G的频段可以分为400-1GHz, 6GHz,30GHz 和60GHz。下表表示5G工作的频率。对于小于6G的频率叫做sub-6GHz, 高于6GHz的工作频率是毫米波。低频段可以提供高的小区覆盖率和移动性,但是同时也带来了速度的限制;反过来,高的频率由于有更高的带宽,从而可以实现很高的速度和容量。下表比较清晰的总结了频率,带宽,小区大小和相应的应用在不同的频率。
6总结
本文遍历了从1G到5G的发展的历史,列出了每次无线通信技术演进的关键技术和应用场景。无线通信的进步是没有止境的。人们已经不满足5G所具有的性能开始筹划6G。6G的应用场景会是移动全息投影,五感通信等等,让我们期待6G技术的到来。